Adler Planetarium

  • Purchase Tickets
  • Museum 9:30 am - 4 pm
  • Café 10 am – 3 pm
  • Shop 9:30 am - 4 pm

Thanks for viewing our mobile site. Click here to visit our full desktop site.

NASA's Chandra Sees Runaway Pulsar Firing an Extraordinary Jet

An extraordinary jet trailing behind a runaway pulsar is seen in this composite image that contains data from Chandra (purple), radio data from the ACTA (green), and optical data from the 2MASS survey (red, green, and blue). The pulsar and its tail are found in the lower right of this image. Image Credit: NASA/CXC/ISDC

An extraordinary jet trailing behind a runaway pulsar is seen in this composite image that contains data from Chandra (purple), radio data from the ACTA (green), and optical data from the 2MASS survey (red, green, and blue). The pulsar and its tail are found in the lower right of this image.

Image Credit: NASA/CXC/ISDC

NASA's Chandra X-ray Observatory has seen a fast-moving pulsar escaping from a supernova remnant while spewing out a record-breaking jet – the longest of any object in the Milky Way galaxy -- of high-energy particles.

The pulsar, a type of neutron star, is known as IGR J11014-6103. IGR J11014-6103's peculiar behavior can likely be traced back to its birth in the collapse and subsequent explosion of a massive star.

Originally discovered with the European Space Agency satellite INTEGRAL, the pulsar is located about 60 light-years away from the center of the supernova remnant SNR MSH 11-61A in the constellation of Carina. Its implied speed is between 2.5 million and 5 million mph, making it one of the fastest pulsars ever observed.

The X-ray jet in IGR J11014-6103 is the longest known in the Milky Way galaxy. In addition to its impressive span, it has a distinct corkscrew pattern that suggests the pulsar is wobbling like a spinning top.

IGR J11014-6103 also is producing a cocoon of high-energy particles that enshrouds and trails behind it in a comet-like tail. This structure, called a pulsar wind nebula, has been observed before, but the Chandra data show the long jet and the pulsar wind nebula are almost perpendicular to one another.

Usually, the spin axis and jets of a pulsar point in the same direction as they are moving, but IGR J11014-6103's spin axis and direction of motion are almost at right angles.

Read more on NASA's website

View All Posts